A flow corridor is a new class of trajectory-based airspace that encloses groups of flights which fly along the same path in one direction and accept responsibility for separation from each other. A well-designed corridor could reduce the airspace complexity, decrease the workload of air traffic controllers and increase the airspace capacity. This paper analyses the impact of different self-separation parameters on capacity and conflicts of the flow corridor. Both the quantitative impact and interaction effects of pairs of parameters are evaluated using the combined discrete-continuous model and Monte Carlo simulation method. The simulation results show that although the initial separation is the dominating factor, the interactions between initial separation and separation buffer, minimum separation, extra switch buffer, extra threshold buffer and velocity difference threshold also have some significant impacts on the capacity and conflicts for the flow corridor.