The 5-bar-linkage manipulator configuration is well suited to many industrial robotic applications. Aside from kinematic suitability, the dynamic equations are greatly simplified due to a decoupling of the manipulator inertia matrix. The design also lends itself to the use of direct drive motors. However, these motors must be capable of providing a high continuous torque to counter gravitational loading in the conventional manipulator design. In this paper, the static and dynamic design of the 5-bar-linkage manipulator is analysed. A technique is proposed whereby the motor torque requirements may be reduced to a fraction of those required in the conventional design, while simultaneously retaining the advantage of a decoupled inertia matrix. Details of a prototype manipulator and experimental results of its performance are presented.