This paper develops a multivariate filter based on an unobserved component model to estimate the financial cycle. Our model features: (1) a dynamic relationship between the financial cycle and key variables; (2) time-varying shock volatility for trend and cycle components. We demonstrate that our approach not only exhibits superior early warning properties for banking crises but also outperforms commonly used indicators in terms of data fit for decomposition exercises, as evidenced by the higher marginal likelihood. We document three important properties of the financial cycle. First, the sensitivity of the financial cycle to changes in real estate valuations increased during the post-90s period. Second, the sensitivity of the cycle to changes in financial conditions displays volatility and country specificities. Finally, our reduced form estimates suggest that the banking crisis of 1988 was preceded by positive contributions from the risk appetite shock, while the primary source of vulnerabilities emanated from the housing market in the run-up to the Global Financial Crisis.