Tethered adult female praying mantises, Sphodromantis lineola (Burr.), were presented with various computer-generated visual stimuli that moved against patterned or homogeneous white backgrounds in predetermined patterns and at predetermined speeds. The degrees to which the stimulus configurations elicited appetitive behaviors (attempting to approach and/or striking) indicated the relative degrees to which the stimuli were classified as prey. Mantises readily struck at cartoon “crickets” that subtended visual angles as great as 24.5 deg x 62.5 deg, but response rate was suppressed if the stimuli were superimposed on horizontally moving patterned backgrounds. Mantises also displayed appetitive behaviors to moving black squares (edge lengths = 10–47 deg) that moved in predetermined “erratic” paths; however, their response rates were affected by several factors: (1) response rate declined as edge length increased over 10 deg; (2) striking was emitted to stimuli viewed from 23 mm (but not farther) away; and (3) both stimulus displacement rate (distance moved between video frames) and apparent speed (video frame rate) dramatically affected the releasing strength of the stimuli. Finally, mantises responded appetitively to random dot patterns moving synchronously against identically patterned backgrounds and to pairs of black squares moving synchronously against a white background. However, in the latter case, response rate declined as the squares were moved farther apart horizontally or vertically. These and previous results from our laboratory on mantises are congruent with behavioral results obtained from other insects such as flies (Diptera) and dragon flies (Odonata) and suggest that there are neuroanatomical similarities between these groups.