Fetal brain size is decreased in some children with complex CHDs, and the distribution of blood and accompanying oxygen and nutrients is regionally skewed from early fetal life dependent on the CHD. In transposition of the great arteries, deoxygenated blood preferentially runs to the brain, whereas the more oxygenated blood is directed towards the lungs and the abdomen. Knowledge of whether this impacts intrauterine organ development is limited. We investigated lung, liver, and total intracranial volume in fetuses with transposition of the great arteries using MRI.
Eight fetuses with dextro-transposition and without concomitant disease or chromosomal abnormalities and 42 fetuses without CHD or other known diseases were scanned once or twice at gestational age 30 through 39 weeks. The MRI scans were conducted on a 1.5T system, using a 2D balanced steady-state free precession sequence. Slices acquired covered the entire fetus, slice thickness was 10 mm, pixel size 1.5 × 1.5 mm, and scan duration was 30 sec.
The mean lung z score was significantly larger in fetuses with transposition compared with those without a CHD; mean difference is 1.24, 95% CI:(0.59;1.89), p < 0.001. The lung size, corrected for estimated fetal weight, was larger than in the fetuses without transposition; mean difference is 8.1 cm3/kg, 95% CI:(2.5;13.7 cm3/kg), p = 0.004.
In summary, fetuses with dextro-transposition of the great arteries had both absolute and relatively larger lung volumes than those without CHD. No differences were seen in liver and total intracranial volume. Despite the small number of cases, the results are interesting and warrant further investigation.