We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Chapter 11, first an introduction to cutting tools is presented, followed by case studies for two hard coatings. For the TiAlN PVD coating case, we describe how to adjust the formation of metastable phase, select the deposition temperature, and manipulate microstructure to obtain desired mechanical properties through first-principles calculations and thermodynamic calculations. The deposition of the TiAlN/TiN and TiAlN/ZrN multilayer guided by first-principles calculations is also briefly mentioned. For the TiCN CVD coating, we demonstrate that computed CVD phase diagrams can accurately describe phases and their compositions under the given temperature, total pressure, and pressures of various gases. Subsequently, computational fluid dynamics (CFD) is used to provide temperature field, velocity, and distributions of various gases inside the CVD reactor. From that information, calculations-designed experiments were conducted and TiCN coatings were deposited highly efficiently. These simulation-driven designs for the hard coatings have found industrial applications in just two years, much quicker compared to the costly experimental approach.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.