Discrete-velocity approximations represent a popular way for computing the Boltzmanncollision operator. The direct numerical evaluation of such methods involve a prohibitivecost, typically O(N2d + 1)where d is the dimension of the velocity space. In this paper, followingthe ideas introduced in [C. Mouhot and L. Pareschi, C. R. Acad. Sci. Paris Sér. IMath. 339 (2004) 71–76, C. Mouhot and L. Pareschi, Math.Comput. 75 (2006) 1833–1852], we derive fast summation techniquesfor the evaluation of discrete-velocity schemes which permits to reduce the computationalcost from O(N2d + 1) to O(N̅dNd log2N), N̅ ≪ N, with almost no loss of accuracy.