We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper deals with pricing formulae for a European call option and an exchange option in the case where underlying asset price processes are represented by stochastic delay differential equations with jumps (hereafter “SDDEJ”). We introduce a new model in which Poisson jumps are added in stochastic delay differential equations to capture behaviors of an underlying asset process more precisely. We derive explicit pricing formulae for the European call option and the exchange option by proving a Lemma on the conditional expectation. Finally, we show that our “SDDEJ” model is meaningful through some numerical experiments and discussions.
We consider a nonsymmetric Toeplitz system which arises in the discretization of a partial integro-differential equation in option pricing problems. The preconditioned conjugate gradient method with a tri-diagonal preconditioner is used to solve this system. Theoretical analysis shows that under certain conditions the tri-diagonal preconditioner leads to a superlinear convergence rate. Numerical results exemplify our theoretical analysis.
We describe a scheme for constructing explicitly solvable arbitrage-free models for stock price. This is used to study a model similar to one introduced by Cox and Ross, where the volatility of the stock is proportional to the square root of the stock price. We derive a formula for the value of a European call option based on this model and give a procedure for estimating parameters and for testing the validity of the model.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.