We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Erysiphe alphitoides causes oak powdery mildew, an example of disease in a wild perennial plant that has shown dramatic changes over a century in Europe. There are several hypotheses for this: pathogen evolution towards lower virulence, a reciprocal increase in oak population resistance, and environmental factors. We show that understanding the pathosystem requires accounting of both seasonality and the occurrence of a pathogen complex, with several cryptic fungal species differing in their life-history traits. Observational data suggest that severity of annual epidemics is linked to interannual pathogen transmission, including winter survival and the infection success of the primary inoculum in spring. Climate-driven phenological synchrony between host and pathogen in spring appears to be critical. Several cryptic Erysiphe species are associated with the disease and co-occur at multiple spatial scales. A semi-discrete model combining a SIR model in the epidemic phase and a discrete-time model between years, based on a within–between season transmission trade-off, describes seasonality and the coexistence of pathogen species. We discuss model refinement by the introduction of host population age classes and other modelling approaches for the evolution of pathogen virulence and host resistance in a changing environment.