We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With the discovery of both binary black hole mergers and a binary neutron star merger, the field of gravitational wave astrophysics has really begun. The LIGO and Virgo detectors will soon improve their sensitivity allowing for the detection of thousands new sources. All these measurements will provide new answers to open questions in binary evolution related to mass transfer, out-of-equilibrium stars and the role of metallicity. The data will give new constraints on uncertainties in the evolution of (massive) stars, such as stellar winds, the role of rotation and the final collapse to a neutron star or black hole. In the long run, the thousands of detections by the Einstein Telescope will enable us to probe their population in great detail over the history of the Universe. For neutron stars, the first question is whether the first detection GW170817 is a typical source or not. In any case, it has spectacularly shown the promise of complementary electromagnetic follow-up. For white dwarfs, we have to wait for LISA (around 2034), but new detections by, e.g., Gaia and LSST will prepare for the astrophysical exploitation of the LISA measurements.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.