It is well known that most commonly used discrete distributions fail to belong to the domain of maximal attraction for any extreme value distribution. Despite this negative finding, C. W. Anderson showed that for a class of discrete distributions including the negative binomial class, it is possible to asymptotically bound the distribution of the maximum. In this paper we extend Anderson's result to discrete-valued processes satisfying the usual mixing conditions for extreme value results for dependent stationary processes. We apply our result to obtain bounds for the distribution of the maximum based on negative binomial autoregressive processes introduced by E. McKenzie and Al-Osh and Alzaid. A simulation study illustrates the bounds for small sample sizes.