A new type of steel-concrete composite beam with double-box cross-section is proposed in this paper. In order to investigate stress behaviors and deflection characteristics of such composite beam with wide flange considering the shear lag effect, theoretical analysis and experimental study are launched simultaneously. Based on the minimum potential energy principle, governing differential equations in view of the shear lag effect are deduced by energy variational method, and analytical solutions of it's stress and deflection under the effect of symmetrical loading are calculated. The preceding analyses show that relative error is less than 14.71%, with a good agreement, and farther show that this method of theoretical derivation, which is used for analyzing shear lag effect of composite beam with wide flange, has certain reference and guidance.