The wideband coherent-pulse radar provides high-resolution image of the target. The model of this image is a complex envelope superposition corresponding to signals diffracted by the point scatterers. The values of complex envelopes are distributed over the radar image coordinate plane in accordance with the point scatterer positions and their reflection coefficients. The radar image model consists of range and Doppler profiles. The parameters of the target point scatterers were defined by processing of two-dimensional (2D) data extracted from the complex 2D discrete Fourier transforms of the radar image. The proposed parametric system identification method performs the estimation of the model parameters for a short dwell time and the extrapolation of the radar data image beyond this time. The modified procedure of inverse synthesis aperture radar imaging applied to actual data showed a reduction of the Doppler smearing and some improvements of image resolution.