The kinematic control of a planar manipulator with several-degrees of redundancy has been a difficult problem because of the heavy computational burden and/or lack of appropriate techniques. The extended motion distribution scheme, which is based on decomposing a planar redundant manipulator into a series of nonredundant/redundant local arms (referred to as subarms) and distributing the motion of an end-effector to subarms at the joint velocity level, is proposed in this paper. The configuration index, which is defined as the product of minors corresponding to subarms in the Jacobian matrix, is used to globally guide the redundant manipulators. To enhance the performance of the proposed scheme, a self-motion control, which handles the internal joint motion that does not contribute to the end-effector motion, can be used optionally to guarantee globally optimal manipulation. The repeatability problem for the redundant manipulators is discussed using the proposed scheme. The results of computer simulations are shown and analyzed in detail for planar 8-DOF and 9-DOF manipulators, as examples.