Non-smooth approximations of steep sigmoidal switching networks, such as those used as qualitative models of gene regulation, lead to analytic and computational challenges that arise as a result of the discontinuities in the vector fields. In order to highlight the need for care in dealing with such systems, several particular phenomena are presented here through illustrative examples, including ‘Zeno breaking’, or computing beyond the finite time convergence of an infinite sequence of threshold transitions; the ‘Contact’ effect, in which in the discontinuous limit, trajectories can pass through a ‘saddle point’ without stopping, though these solutions are not unique and other solutions stop for arbitrary time intervals; and sensitive behaviour that arises from exotic dynamics within switching regions.