A self-adjoint first-order system with Hermitian π-periodic potential Q(z), integrable on compact sets, is considered. It is shown that all zeros of are double zeros if and only if this self-adjoint system is unitarily equivalent to one in which Q(z) is π/2-periodic. Furthermore, the zeros of are all double zeros if and only if the associated self-adjoint system is unitarily equivalent to one in which Q(z) = σ2Q(z)σ2. Here, Δ denotes the discriminant of the system and σ0, σ2 are Pauli matrices. Finally, it is shown that all instability intervals vanish if and only if Q = rσ0 + qσ2, for some real-valued π-periodic functions r and q integrable on compact sets.