In order to examine the potential survivability of life in the Martian deep subsurface, we have investigated the effects of temperature (45°C, 55°C and 65°C) and pressure (1, 400, 800 and 1200 atm) on the growth, carbon isotopic data and morphology of chemolithoautotrophic anaerobic methanogenic archaea, Methanothermobacter wolfeii. The growth and survivability of this methanogen were determined by measuring the methane concentration in headspace gas samples after the cells were returned to their conventional growth conditions. Interestingly, this methanogen survived at all the temperatures and pressures tested. M. wolfeii demonstrated the highest methane concentration following exposure to pressure of 800 atm and a temperature of 65°C. We found that the stable carbon isotopic fractionation of methane, δ13C(CH4), was slightly more enriched in 12C at 1 atm and 55°C than the carbon isotopic data obtained in other temperature and pressure conditions. A comparison of the images of the cells before and after the exposure to different temperatures and pressures did not show any obvious alteration in the morphology of M. wolfeii. The research reported here suggests that at least one methanogen, M. wolfeii, may be able to survive under hypothetical Martian subsurface conditions with respect to temperature and pressure.