En s’appuyant sur la notion d’équivalence au sens de Bohr entre polynômes de Dirichlet et sur le fait que sur un corps quadratique la fonction zeta de Dedekind peut s’écrire comme produit de la fonction zeta de Riemann et d’une fonction L, nous montrons que, pour certaines valeurs du discriminant du corps quadratique, les sommes partielles de la fonction zeta de Dedekind ont leurs zéros dans des bandes verticales du plan complexe appelées bandes critiques et que les parties réelles de leurs zéros y sont denses.