In preliminary field trials, a reduction in grass control was observed when flumetsulam or MON 12037 with and without the safener MON 13900 was applied with metolachlor compared to metolachlor alone. Greenhouse studies were initiated to study potential interactions between acetolactate synthase (ALS)-inhibiting herbicides and metolachlor. Metolachlor at 0.14, 0.28, and 0.56 kg ai/ha was applied alone and in combination with flumetsulam at 0.0073 and 0.015 kg ai/ha and MON 12037 with safener at 0.011 and 0.021 kg ai/ha. Flumetsulam and MON 12037 with safener alone provided 13 to 23% visible barnyardgrass control and metolachlor at 0.14 kg/ha provided 82% control. Combining flumetsulam and MON 12037 with metolachlor did not increase herbicide activity beyond that observed from metolachlor alone, regardless of the parameter evaluated. Combinations of 0.14 kg/ha of metolachlor with 0.011 and 0.021 kg/ha of MON 12037 with safener or 0.015 kg/ha of flumetsulam resulted in antagonism of barnyardgrass according to Colby's multiplicative interactive model. Visible control and plant dry weight were also antagonized when 0.28 kg/ha of metolachlor was applied with 0.021 kg/ha of MON 12037 with safener. Field studies were conducted in corn and soybean to evaluate giant foxtail control from metolachlor alone and in tank mixtures with flumetsulam, chlorimuron and MON 12037 with and without safener. Although isolated incidences of antagonism were noted, there was no consistent effect on grass control when these ALS-inhibiting herbicides were applied in combination with metolachlor in 3 years of field trials.