Keratinization of the epidermal cells of the bovine claw generates the horn that gives the tissue its mechanical strength. Disruption of keratinization is likely to have a detrimental effect on the strength and integrity of the horn, and could lead to solar lesions and lameness. As part of a wider investigation of the cell biological causes of lameness in dairy animals, we have compared keratin synthesis and distribution in healthy bovine claw tissue with those in hooves with solar ulcers. Protein synthesis was measured by [35S]-labelled amino acid incorporation in claw tissue explant cultures. [35S]-labelled protein synthesis was higher in tissue from diseased claws than in healthy claws, and highest at the ulcer site. The identity of proteins synthesised in vitro did not differ between healthy and diseased tissue. DNA synthesis indicative of cell proliferation was also elevated in diseased tissue. Immunoblotting after one- or two-dimensional electrophoresis showed cytokeratins (CK) 4, 5/6, 10 and 14 to be amongst those expressed in healthy claw tissue. The relative abundance of these keratins was not altered in healthy regions of ulcerated hooves, nor at the ulcer site, but CK16, not usually found in healthy tissue, was detected in the sole of diseased claws. CK5/6 and CK14 were shown by immunohistochemistry to be present in the basal epidermis of healthy tissue, whereas CK10 was found in supra-basal layers. In healthy tissue from ulcerated claws, this distribution was unaltered, but at the site of solar ulcers, CK5/6 and CK14 were each found in both basal and supra-basal epidermis. The study suggests that solar ulceration of the bovine claw is not associated with gross alteration in the keratin composition of the tissue, but causes abnormal distribution of cytokeratins, perhaps as a result of loss of positional cues from the basement membrane. Ulceration did, however, stimulate cell repair involving epidermal protein synthesis (including keratins), and keratinocyte proliferation.