Okruginite, Cu2SnSe3 is a new mineral discovered from the high-sulfidation epithermal Au Ozernovskoye deposit, Kamchatka peninsula, Russia. It occurs as distinct Se-rich zones in Se-bearing mohite crystals or forms aggregates of small crystals 10–15 μm in size in quartz. In plane-polarised light, okruginite appears brownish grey. Pleochroism and bireflectance are discernible, anisotropy is weak, with rotation tints pale blue-grey to pale grey-brown; it exhibits no internal reflections. Reflectance values of the synthetic analogue of okruginite in air (R1, R2 in %) are: 25.9, 26.5 at 470 nm, 27.5, 26.5 at 546 nm, 27.8, 28.4 at 589 nm and 27.7, 28.4 at 650 nm. Twenty seven electron-microprobe analyses of okruginite give an average composition: Cu 29.48, Sn 28.10, Se 33.40 and S 8.75, total 99.73 wt.%, corresponding to the empirical formula Cu1.99Sn1.02(Se1.82S1.17)Σ2.99 based on 6 atoms; the average of seven analyses on its synthetic analogue is: Cu 23.62, Sn 24.37 and Se 49.09, total 97.08 wt.%, corresponding to Cu1.86Sn1.03Se3.11. The density, calculated on the basis of the empirical formula, is 5.126 g/cm3. The mineral is monoclinic, space group Cc, with a = 6.9906(2), b = 12.0712(4) Å, c = 6.9723(2) Å, β = 109.350(10)°, V = 555.1(2) Å3 and Z = 4. The crystal structure was solved and refined from the powder X-ray-diffraction data of synthetic Cu2SnSe3. Okruginite is the selenium-end member of the Cu2SnS3–Cu2SnSe3 solid solution. The mineral name is in honour of Dr. Victor Mikhailovich Okrugin, a Russian mineralogist, for his contributions to mineralogy and geology of epithermal deposits, in particular of the Au–Ag deposits in Kamchatka.