We have investigated the effects of inactivation of localized sites in area 17 on the visual responses of cells in visuotopically corresponding regions of area 18. Experiments were performed on adult normal cats. The striate cortex was inactivated by the injection of nanoliters of lidocaine hydrochloride or of γ-aminobutyric acid (GABA) dissolved in a staining solution. Responses of the simple and complex cells of area 18 to optimally oriented light and dark bars moving in the two directions of motion were recorded before, during, and after the drug injection. Two main effects are described.
First, for a substantial number of cells, the drug injection provoked an overall reduction of the cell's visual responses. This nonspecific effect largely predominated in the complex cell family (76% of the units affected). This effect is consistent with the presence of long-range excitatory connections in the visual cortex.
Second, the inactivation of area 17 could affect specific receptive-field properties of cells in area 18. The main specific effect was a loss of direction selectivity of a number of cells in area 18, mainly in the simple family (more than 53% of the units affected). The change in direction selectivity comes either from a disinhibitory effect in the nonpreferred direction or from a reduction of response in the preferred direction. It is proposed that the disinhibitory effects were mediated by inhibitory interneurones within area 18. In a very few cases, the change of directional preference was associated with a modification of the cell's response profile.
These results showed that the signals from area 17 are necessary to drive a number of units in area 18, and that area 17 can contribute to, or at least modulate, the receptive-field properties of a large number of cells in the parastriate area.