This paper presents and discusses several methods for predicting the low-frequency (LF) noise at the output of a mm-wave detector. These methods are based on the extraction of LF noise source parameters from the single diode under a specific set of bias conditions and the transfer or conversion of these noise sources, under different operating conditions including cyclostationary regime, to the quasi-dc output of a mm-wave detector constructed with the same model of diode. The noise analysis is based on a conversion-matrix type formulation, which relates the carrier noisy sidebands of the input signal with the detector output spectrum through a pair of transfer functions obtained in commercial software. Measurements of detectors in individual and differential setups will be presented and compared with predictions.