We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Our treatment of aerodynamic performance (i.e. the mapping from shape to lift and drag for clean wings) idealized the plane as a mass point with lift and drag forces. The variation of the aerodynamic forces on the aircraft along the flight path determines its stability and the need for control with sustained authority. Addressing this issue requires an airplane model responding to gravity, thrust, and realistic aerodynamic forces and moments. A six-degree-of-freedom Newtonian rigid body model is compiled from the mass and balance properties of the airframe. Computational fluid dynamics (CFD) is used to predict the aerodynamic forces and moments, expressed in look-up tables of coefficients, and a major part of the text explains how such tables can be populated efficiently. The stability properties describe how well the aircraft recovers from external disturbances and how it reacts to commanded changes in flight attitude. The response in steady flight to small disturbances can be represented as a superposition of a small number of natural flight modes, the quantitative properties of which provide the quantified flight-handling qualities. A number of examples are given, from redesign of the Transonic Cruiser configuration for better pitch stability to CFD investigation of vortex interference on control surfaces on an unmanned aerial vehicle.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.