We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Concentrated random variables are frequently used in representing deterministic delays in stochastic models. The squared coefficient of variation ($\mathrm {SCV}$) of the most concentrated phase-type distribution of order $N$ is $1/N$. To further reduce the $\mathrm {SCV}$, concentrated matrix exponential (CME) distributions with complex eigenvalues were investigated recently. It was obtained that the $\mathrm {SCV}$ of an order $N$ CME distribution can be less than $n^{-2.1}$ for odd $N=2n+1$ orders, and the matrix exponential distribution, which exhibits such a low $\mathrm {SCV}$ has complex eigenvalues. In this paper, we consider CME distributions with real eigenvalues (CME-R). We present efficient numerical methods for identifying a CME-R distribution with smallest SCV for a given order $n$. Our investigations show that the $\mathrm {SCV}$ of the most concentrated CME-R of order $N=2n+1$ is less than $n^{-1.85}$. We also discuss how CME-R can be used for numerical inverse Laplace transformation, which is beneficial when the Laplace transform function is impossible to evaluate at complex points.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.