The accuracy of the Global Positioning System (GPS) observable, especially for the code observable, has improved with the development of Global Navigation Satellite System (GNSS) receiver technology. An evaluation of the GPS code observable is presented in this paper, together with a stochastic model for the code and phase observables in Precise Point Positioning (PPP), established using the evaluated results. The results show that the code observables of Leica GNSS receivers are generally better than those of some other brand receivers and the Root Mean Square (RMS) for the code observables of the Leica GRX1200PRO, which includes the multipath effect, reaches 0·71 m, although Coarse/Acquisition (C/A) code observables are tracked. The static positioning of the code observable can reach centimetre level and the convergence time for the JPLM station is just 2·5 hours. The positioning results show that it is difficult to converge the Up direction to the centimetre level, compared with the North and East directions. The results show that static positioning can be correlated with the accumulation characteristic of the error for the code observable, while that that of the kinematic mode can be correlated to the error value. The shortened PPP convergence times verify that the presented stochastic models are effective.