West Junggar in the southwestern Central Asian Orogenic Belt is a critical area for the study of the Junggar oceanic basin and may also reveal tectonic evolutionary events before the final closure of the Palaeo-Asian Ocean. The sedimentary formations and paragenetic associations of the Upper Carboniferous Chengjisihanshan Formation in southern West Junggar jointly reveal a back-arc basin setting with zircon U–Pb ages of 313–310 Ma for the basaltic rocks. Geochemically, the basaltic rocks are tholeiitic with low SiO2 (47.76–52.06 wt %) and K2O (0.05–0.74 wt %) but high MgO (6.55–7.68 wt %) contents and Mg no. (52.9–58.9) values. They display slightly flat rare earth element patterns with weak positive Eu anomalies, and show enrichments in large ion lithophile elements relative to high field strength elements with negative Nb and Ta anomalies, exhibiting both N-MORB-like and arc-like signatures, similar to the back-arc basin basalt from the Mariana Trough. The high positive zircon εHf(t) and bulk εNd(t) values as well as high initial Pb isotopes, together with relatively high Sm/Yb and slightly low Th/Ta ratios imply a depleted spinel lherzolitic mantle source metasomatized by slab-derived fluids. The field and geochemical data jointly suggest that the volcanic rocks within the Chengjisihanshan Formation were formed in an intra-oceanic back-arc basin above the northwestward subduction of the Junggar oceanic lithosphere in southern West Junggar. The confirmation of the Late Carboniferous back-arc basin basalts, together with other geological observations, indicate that an arc-basin evolutionary system still existed in southern West Junggar at c. 310 Ma, and the Junggar Ocean closed after Late Carboniferous time.