Holocene fire–climate–vegetation linkages are mostly understood at individual sites by comparing charcoal and pollen records with other paleoenvironmental proxy and model simulations. This scale of reconstruction often obscures detection of large-scale patterns in past fire activity that are related to changes in regional climate and vegetation. A network of 31 charcoal records from southern South America was examined to assess fire history along a transect from subtropic to subantarctic biomes. The charcoal data indicate that fire activity was greater than present at ca. 12,000 cal yr BP and increased further and was widespread at 9500 cal yr BP. Fire activity decreased and became more spatially variable by 6000 cal yr BP, and this trend continued to present. Atmospheric circulation anomalies during recent high-fire years show a southward shift in westerlies, and paleoclimate model simulations and data syntheses suggest that such conditions may have prevailed for millennia in the early Holocene when the pole-to-equator temperature gradients were weaker and annual temperatures were higher than present, in response to orbital-time-scale insolation changes.