We present a parallel Cartesian method to solve elliptic problems with complex immersed interfaces. This method is based on a finite-difference scheme and is second-order accurate in the whole domain. The originality of the method lies in the use of additional unknowns located on the interface, allowing to express straightforwardly the interface transmission conditions. We describe the method and the details of its parallelization performed with the PETSc library. Then we present numerical validations in two dimensions, assorted with comparisons to other related methods, and a numerical study of the parallelized method.