Excessive dietary P intake alone can be deleterious to bone through increased parathyroid hormone (PTH) secretion, but adverse effects on bone increase when dietary Ca intake is low. In many countries, P intake is abundant, whereas Ca intake fails to meet recommendations; an optimal dietary Ca:P ratio is therefore difficult to achieve. Our objective was to investigate how habitual dietary Ca:P ratio affects serum PTH (S-PTH) concentration and other Ca metabolism markers in a population with generally adequate Ca intake. In this cross-sectional analysis of 147 healthy women aged 31–43 years, fasting blood samples and three separate 24-h urinary samples were collected. Participants kept a 4-d food record and were divided into quartiles according to their dietary Ca:P ratios. The 1st quartile with Ca:P molar ratio ≤ 0·50 differed significantly from the 2nd (Ca:P molar ratio 0·51–0·57), 3rd (Ca:P molar ratio 0·58–0·64) and 4th (Ca:P molar ratio ≥ 0·65) quartiles by interfering with Ca metabolism. In the 1st quartile, mean S-PTH concentration (P = 0·021) and mean urinary Ca (U-Ca) excretion were higher (P = 0·051) than in all other quartiles. These findings suggest that in habitual diets low Ca:P ratios may interfere with homoeostasis of Ca metabolism and increase bone resorption, as indicated by higher S-PTH and U-Ca levels. Because low habitual dietary Ca:P ratios are common in Western diets, more attention should be focused on decreasing excessively high dietary P intake and increasing Ca intake to the recommended level.