Regression analysis with stationary errors is extended to the case when observations are not equally spaced. The errors are modelled as either a discrete-time ARMA process with missing observations, or as a continuous-time autoregression with observational error observed at arbitrary times. Using a state-space representation, a Kalman filter is used to calculate the exact likelihood. The linear regression coefficients are separated out of the likelihood so non-linear optimization is required only with respect to the parameters modelling the error structure.