Let A be a unital C*-algebra. Let (B,E) be a pair consisting of a unital C*-algebra B containing A as a C*-subalgebra with a unit that is also the unit of B, and a conditional expectation E from B onto A that is of index-finite type and of depth 2. Let B1 be the C*-basic construction induced by (B,E). In this paper, we shall show that any such pair (B,E) satisfying the conditions that A′∩B=ℂ1 and that A′∩B1 is commutative is constructed by a saturated C*-algebraic bundle over a finite group. Furthermore, we shall give a necessary and sufficient condition for B to be described as a twisted crossed product of A by its twisted action of a finite group under the condition that A′∩B1 is commutative.