The relationship between the behavioral and physiological consequences of rearing with optically induced cyclotropia was assessed. Beginning at the age of 4 weeks, kittens wore goggles that rotated the visual field in opposite directions in each eye for several hours each day over a period of several weeks. The amounts of interocular rotation were 0 deg (control), 16 deg, and 32 deg. Subsequently, they were tested to determine their monocular and binocular depth thresholds and, in some cases, visual acuity. In several kittens recordings were also made from the visual cortex. Binocular performance of all kittens in the 0-deg condition and three out of six kittens in the 16-deg condition was comparable to, although slightly lower than, that of normally reared kittens. In contrast, none of the 32-deg kittens showed any evidence of the binocular superiority that would suggest the presence of stereopsis. Extracellular unit recordings from the visual cortex confirmed our earlier results with goggle-reared kittens. In 16-deg kittens, the distribution of the cells' preferred interocular disparities (IOD) in receptive-field orientation showed a compensating shift so that the mean matched the experienced rotational disparity. In the 32-deg kittens, binocularity was greatly disrupted and there was no compensatory shift in the IOD distribution. Two 32-deg kittens were afforded 3 years of subsequent normal visual experience. Both the behavioral and the physiological findings were unaffected by normal visual exposure in adulthood. Control measurements of acuity indicated that any deficits in depth perception were not due to reduced spatial-resolution abilities. The data indicate that the kitten visual system is able to maintain functional binocularity sufficient to subserve a moderate level of stereoacuity with interocular rotations of up to at least 16 deg.