A nine-dimensional exponential Lie group G and a linear form ℓ on the Lie algebra of G are presented such that for all Pukanszky polarizations 𝔭 at ℓ the canonically associated unitary representation ρ=ρ(ℓ,𝔭) of G has the property that ρ(ℒ1(G)) does not contain any nonzero operator given by a compactly supported kernel function. This example shows that one of Leptin’s results is wrong, and it cannot be repaired.