Animals respond to climatic change by adapting or by altering distributional patterns. How an animal responds is influenced by where it is positioned within its geographic range; the probability of extirpation is increased near range boundaries. Here, we examine the impact of Holocene climatic fluctuations on a small mammalian herbivore, the bushy-tailed woodrat (Neotoma cinerea), at five locations within south central Idaho and northwestern Utah. Previous work demonstrated that woodrats adapt to temperature shifts by altering body size. We focus here on the relationship between body mass, temperature, and location within the geographic range. Body mass is estimated by measuring fossil fecal pellets, a technique validated in earlier work. Overall, we find the predicted phenotypic response to climate change: animals were larger during cold periods, and smaller during warmer episodes. However, we also identify several time periods when changes in environmental temperature exceeded the adaptive flexibility of N. cinerea. A smaller-bodied species, the desert woodrat (N. lepida) apparently invaded lower elevation sites during the mid-Holocene, despite being behaviorally and physically subordinate to N. cinerea. Analysis of contemporary patterns of body size and thermal tolerances for both woodrat species suggests this was because of the greater heat tolerance of N. lepida. The robust spatial relationship between contemporary body size and ambient temperature is used as a proxy to reconstruct local climate during the Holocene.