Mechanical properties and fracture characteristics of Zr-based bulk metallic glass (BMG) composites containing carbon nanotube (CNT) addition were investigated in detail. The interfacial reaction between the added CNTs and the glass matrix causes the formation of some V-shape nicks on the residual CNTs. These nicks have significant effect on the mechanical properties and fracture modes of the BMG composites. The compressive fracture strength increases with increasing the volume fraction of CNT addition at first, and starts to decrease gradually when the volume fraction of CNT addition is more than 5.0%. The fracture modes of the BMG composites also change from typical shear flow deformation behavior to completely embrittling fracture gradually. The V-shape nicks originating from the interfacial reaction are responsible for the decrease of fracture strength and the variation of fracture modes.