In two earlier papers [6], [7] the properties of bivariate renewal processes and their associated two-dimensional renewal functions, H(x, y) were examined. By utilising the Fréchet bounds for joint distributions and the properties of univariate renewal processes, a collection of upper and lower bounds for H(x, y) are constructed. The evaluation of these bounds is carried out for the case of the family of bivariate Poisson processes. An interesting by-product of this investigation leads to a new inequality for the median of a Poisson random variable.