The efficacy of WSSA Group 4 herbicides has been reported to vary with dependence on the time of day the application is made, which may affect the value of this mechanism of action as a control option and resistance management tool for Palmer amaranth. The objectives of this research were to evaluate the effect of time of day for application on 2,4-D and dicamba translocation and whether or not altering translocation affected any existing variation in phytotoxicity seen across application time of day. Maximum translocation (Tmax) of [14C]2,4-D and [14C]dicamba out of the treated leaf was significantly increased 52% and 29% to 34% in one of two repeated experiments for each herbicide, respectively, with application at 7:00 AM compared with applications at 2:00 PM and/or 12:00 AM. Applications at 7:00 AM increased [14C]2,4-D distribution to roots and increased [14C]dicamba distribution above the treated leaf compared with other application timings. In phytotoxicity experiments, dicamba application at 8 h after exposure to darkness (HAED) resulted in significantly lower dry root biomass than dicamba application at 8 h after exposure to light (HAEL). Contrasts indicated that injury resulting from dicamba application at 8 HAEL, corresponding to midday, was significantly reduced with a root treatment of 5-[N-(3,4-dimethoxyphenylethyl)methylamino]-2-(3,4-dimethoxyphenyl)-2-isopropylvaleronitrile hydrochloride (verapamil) compared with injury observed with dicamba application and a root treatment of verapamil at 8 HAED, which corresponded to dawn. Overall, time of application appears to potentially influence translocation of 2,4-D and dicamba. Furthermore, inhibition of translocation appears to somewhat influence variation in phytotoxicity across times of application. Therefore, translocation may be involved in the varying efficacy of WSSA Group 4 herbicides due to application time of day, which has implications for the use of this mechanism of action for effective control and resistance management of Palmer amaranth.