Efficient algorithm integration is a key issue in aerial robotics. However, only a few integration solutions rely on a cognitive approach. Cognitive approaches break down complex problems into independent units that may deal with progressively lower-level data interfaces, all the way down to sensors and actuators. A cognitive architecture defines information flow among units to produce emergent intelligent behavior. Despite the improvements in autonomous decision-making, several key issues remain open. One of these issues is the selection, coordination, and decision-making related to the several specialized tasks required for fulfilling mission objectives. This work addresses decision-making for the cognitive unmanned-aerial-vehicle architecture coined as ARCog. The proposed architecture lays the groundwork for the development of a software platform aligned with the requirements of the state-of-the-art technology in the field. The system is designed to provide high-level decision-making. Experiments prove that ARCog works correctly in its target scenario.