Neuronal responses in cat visual area 21a were analyzed when the primary visual cortex (areas 17 and 18) was deactivated by cooling. Ipsilateral and contralateral cortices were deactivated separately. Results established that (1) cooling the ipsilateral primary cortex diminished the activity of all area 21a cells and, in 30%, blocked responsiveness altogether, and (2) cooling the contralateral primary cortex initially increased activity in area 21a cells but, with further cooling, reduced it to below the original level although only 9% of cells ceased responding. These findings were then compared to earlier results in which bilateral deactivation of the primary cortex greatly reduced and, in most cases, blocked the activity of area 21a cells (Michalski et al., 1993). Despite the response attenuation following cooling of the primary visual cortex (either ipsilateral or contralateral), neurons of area 21a retained their original orientation specificity and sharpness of tuning (measured as the half-width at half-height of the orientation tuning curve). Direction selectivity also tended to remain unchanged. We concluded that for area 21a cells (1) the ipsilateral primary cortex provides the main excitatory input; (2) the contralateral primary cortex supplies a large inhibitory input; and (3) the nature of orientation specificity, sharpness of orientation tuning, and direction selectivity are largely unaffected by removal of the ipsilateral hemisphere excitatory input or the contralateral hemisphere inhibitory input.