In this paper, the robust, optimal, output control problem is dealt with for a 3-degree-of-freedom laboratory helicopter. The control goal is to achieve the practical tracking of the desired elevation and pitch angles without the angular velocity feedback. A nominal linear time-invariant system is introduced and the real system is considered as the nominal one with uncertainties, including parameter perturbations, nonlinear time-varying uncertainties, and external disturbances. An observer is first used to estimate angular velocity. Then a nominal controller based on the optimal control method is designed for the nominal system to achieve the desired tracking properties. Lastly, a robust output compensator is added to restrain the effects of uncertainties in the real system. It is shown that asymptotic tracking properties and robust stability can be achieved. Experimental results on the laboratory helicopter are shown to verify the effectiveness of the proposed control method.