Ag3O was synthesized by jet-milling magnetron-sputtered Ag–Ag2O thin films. Heating the jet-milled powders in air and N2 from 40 to 148 °C at ambient pressure produced Ag3O-rich powders. The phase composition and unit-cell parameters of the jet-milled powders were measured as a function of temperature with in situ X-ray powder diffraction experiments from −186 to 293 °C. Ag3O was also produced by ball milling and sonicating jet-milled films at ambient conditions. The phase composition, unit-cell parameters, and thermal-reaction rates indicate nonstoichiometric Ag3O was produced from the reaction of metastable, nonstoichiometric Ag2O (cuprite structure) and ccp Ag. The thermal expansion of Ag3O is anisotropic; below 25 °C, the a-axis expansion is about twice the c-axis expansion resulting in a negative slope of c/a(T). The reversal of the sign of c/a(T) near 25 °C is dramatic. The thermal reaction is arrested when the temperature is rapidly increased from ambient to 130 °C. Ag3O is metastable and decreases its unit-cell volume during kinetic decomposition to Ag when heated above ambient temperature in air and nitrogen. The relative volume expansion of Ag3O is about 80% less than Ag at room temperature and below. The suite of nonstoichiometric Ag3O produced by heating displays a linear relation between c/a and unit-cell volume at room temperature. The c/a and unit-cell volume of a hydrothermally grown Ag3O single crystal reported in a published structure determination was the Ag-rich, low-volume end member of the linear series. The c/a and unit-cell volume are sensitive indicators of the oxygen content and state of disorder.