We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The problem considered is to elucidate under what circumstances the condition
holds, where and Xi are independent and have common distribution function F. The main result is that if F has zero mean, and (*) holds with F belongs to the domain of attraction of a completely asymmetric stable law of parameter 1/γ. The cases are also treated. (The case cannot arise in these circumstances.) A partial result is also given for the case when and the right-hand tail is ‘asymptotically larger’ than the left-hand tail. For 0 < γ < 1, (*) is known to be a necessary and sufficient condition for the arc-sine theorem to hold for Nn, the number of positive terms in (S1, S2, …, Sn). In the final section we point out that in the case γ = 1 a limit theorem of a rather peculiar type can hold for Nn.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.