We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this open, non-controlled, multi-centre study was to evaluate the pharmacokinetics and safety of a 24–72 h continuous epidural ropivacaine infusion in children aged 1–9 yr.
Methods
After induction of general anaesthesia, 29 ASA I–II children, scheduled for major surgery in dermatomes below T10 had lumbar epidural catheters placed. A bolus of ropivacaine, 2 mg kg−1, was given over 4 min, followed immediately by an infusion of 2 mg mL−1 ropivacaine 0.4 mg kg−1 h−1 for the next 24–72 h.
Results
Plasma concentrations of total ropivacaine (mean 0.83 and 1.06 mg L−1 at 16–31 and 59–72 h, respectively) and α1-acid-glucoprotein (mean 13 and 25 μmol L−1 at baseline and 59–72 h) increased over the course of the infusion. Plasma concentrations of unbound ropivacaine were stable throughout the epidural infusion (mean 0.021 range 0.011–0.068 and mean 0.016 range 0.009–0.023 mg L−1 at 16–31 and 59–72 h, respectively) and were well below threshold levels associated with central nervous system toxicity in adults (0.35 mg L−1). Apparent unbound clearance (mean 346, range 86–555 mL min−1 kg−1) showed no age-dependency. No signs of systemic toxicity or cardiovascular effects were observed. All patients received additional analgesics with morphine.
Conclusion
Following a 24–72 h epidural infusion of ropivacaine 0.4 mg kg−1 h−1 in 1–9-yr-old children, the plasma concentrations of unbound ropivacaine were stable over time with no age-dependency.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.