The Ankle Mimicking Prosthetic (AMP-) Foot 2 is a new energy efficient, powered transtibial prosthesis mimicking intact ankle behavior. The author's research is focused on the use of a low power actuator which stores energy in springs during the complete stance phase. At push-off, this energy can be released hereby providing propulsion forces and torques to the amputee. With the use of the so-called catapult actuator, the size and weight of the drive can be decreased compared to state-of-the-art powered prostheses, while still providing the full power necessary for walking.
In this article, the authors present a detailed description of the catapult actuator followed by a comparison with existing actuator technology in powered prosthetic feet with regard to torque and power requirements. The implication on the actuator's design will then be outlined. Further, a description of the control strategy behind the AMP-Foot 2 and 2.1 will be given. In the last section of the article, the actuation principle and control are illustrated by experimental validation with a transfemoral amputee. Conclusions and future work complete the paper.