High-chromium heat-resistant steel has been widely used as the key material to improve the condition of steam pressure and temperature in the modern high-efficiency power plants. Despite the use of the steel above 550°C for several decades, its major failure is owing to the creep fracture. In this study, the effect of creep stress on the microstructure in 9–12% Cr steel has been investigated microscopically, and it is clarified that the creep stress enhances precipitation of Laves phase and influences the lath width and dislocation density in lath interior.