We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the symplectic geometry of derived intersections of Lagrangian morphisms. In particular, we show that for a functional $f : X \rightarrow \mathbb {A}_{k}^{1}$, the derived critical locus has a natural Lagrangian fibration $\textbf {Crit}(f) \rightarrow X$. In the case where f is nondegenerate and the strict critical locus is smooth, we show that the Lagrangian fibration on the derived critical locus is determined by the Hessian quadratic form.
In this paper, we introduce the notion of planar two-center Stark–Zeeman systems and define four
$J^{+}$
-like invariants for their periodic orbits. The construction is based on a previous construction for a planar one-center Stark–Zeeman system in [K. Cieliebak, U. Frauenfelder and O. van Koert. Periodic orbits in the restricted three-body problem and Arnold’s
$J^+$
-invariant. Regul. Chaotic Dyn.22(4) (2017), 408–434] as well as Levi-Civita and Birkhoff regularizations. We analyze the relationship among these invariants and show that they are largely independent, based on a new construction called interior connected sum.
We use feral pseudoholomorphic curves and adiabatic degeneration to prove an extended version of the so-called ‘almost existence result’ for regular compact Hamiltonian energy surfaces. That is, that for a variety of symplectic manifolds equipped with a Hamiltonian, almost every (non-empty) compact energy level has a periodic orbit.
In this paper a homotopy co-momentum map (à la Callies, Frégier, Rogers and Zambon) transgressing to the standard hydrodynamical co-momentum map of Arnol’d, Marsden, Weinstein and others is constructed and then generalized to a special class of Riemannian manifolds. Also, a covariant phase space interpretation of the coadjoint orbits associated to the Euler evolution for perfect fluids, and in particular of Brylinski’s manifold of smooth oriented knots, is discussed. As an application of the above homotopy co-momentum map, a reinterpretation of the (Massey) higher-order linking numbers in terms of conserved quantities within the multisymplectic framework is provided and knot-theoretic analogues of first integrals in involution are determined.
We suggest a way to quantize, using Berezin–Toeplitz quantization, a compact hyperkähler manifold (equipped with a natural 3-plectic form), or a compact integral Kähler manifold of complex dimension n regarded as a (2n−1)-plectic manifold. We show that quantization has reasonable semiclassical properties.
We prove that every symplectic filling of the link of a rational surface singularity with reduced fundamental cycle admits a rational compactification, possibly after a modification of the filling in a collar neighbourhood of the link.
We classify finite subgroups of $\text{SO}\left( 4 \right)$ generated by anti-unitary involutions. They correspond to involutions fixing pointwise a Lagrangian plane. Explicit descriptions of the finite groups and the configurations of Lagrangian planes are obtained.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.