A Banach space has the complete continuity property (CCP) if each bounded linear operator from L1 into is completely continuous (i.e., maps weakly convergent sequences to norm convergent sequences). The main theorem shows that a Banach space failing the CCP has a subspace with a finite dimensional decomposition which fails the CCP. If furthermore the space has some nice local structure (such as fails cotype or is a lattice), then the decomposition may be strengthened to a basis.