The first-order cross correlation and corresponding applications in the passive imaging are deeply studied by Garnier and Papanicolaou in their pioneer works. In this paper, the results of the first-order cross correlation are generalized to the second-order cross correlation. The second-order cross correlation is proven to be a statistically stable quantity, with respective to the random ambient noise sources. Specially, with proper time scales, the stochastic fluctuation for the second-order cross correlation converges much faster than the first-order one. Indeed, the convergent rate is of order , with 0 < α < 1. Besides, by using the stationary phase method in both homogeneous and scattering medium, similar behaviors of the singular components for the second-order cross correlation are obtained. Finally, two imaging methods are proposed to search for a target point reflector: One method is based on the imaging function, and has a better signal-to-noise rate; Another method is based on the geometric property, and can improve the bad range resolution of the imaging results.