The concept of essential map and topological transversality due to A. Granas is extended to multi-valued maps in locally convex spaces and it is next applied to prove the solvability of boundary value problems for certain neutral functional differential equations. In order to achieve a required compactness property, the weak topology in a Sobolev space is considered. The topological tool established in the first part of the paper allows to avoid some obstacles which are encountered when trying to use standard degree-theoretical arguments.